Strongly correlated fermions after a quantum quench.
نویسندگان
چکیده
Using the adaptive time-dependent density-matrix renormalization group method, we study the time evolution of strongly correlated spinless fermions on a one-dimensional lattice after a sudden change of the interaction strength. For certain parameter values, two different initial states (e.g., metallic and insulating) lead to observables which become indistinguishable after relaxation. We find that the resulting quasistationary state is nonthermal. This result holds for both integrable and nonintegrable variants of the system.
منابع مشابه
Entropy of isolated quantum systems after a quench.
A diagonal entropy, which depends only on the diagonal elements of the system's density matrix in the energy representation, has been recently introduced as the proper definition of thermodynamic entropy in out-of-equilibrium quantum systems. We study this quantity after an interaction quench in lattice hard-core bosons and spinless fermions, and after a local chemical potential quench in a sys...
متن کاملAtomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench.
Using a Fermi-Bose mixture of ultracold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. ...
متن کاملQuantum Critical Point in Heavy Fermions
The concept that heavy fermions are close to a quantum critical point and that this proximity determines their physical behavior has opened new perspectives in the study of these systems. It has provided a new paradigm for understanding and probing the properties of these strongly correlated materials. Scaling ideas were important to establish this approach. We give below a brief and personal a...
متن کاملFe b 20 06 Strongly correlated Fermi - Bose mixtures in disordered optical lattices
We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be contr...
متن کاملStrongly correlated Fermi-Bose mixtures in disordered optical lattices
We investigate theoretically the low-temperature physics of a twocomponent ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 98 21 شماره
صفحات -
تاریخ انتشار 2007